Information Management Resource Kit

Module on Management of Electronic Documents

UNIT 5. DATABASE MANAGEMENT SYSTEMS

LESSON 5. RELATIONAL DATABASES AND SQL BASICS

NOTE

Please note that this PDF version does not have the interactive features offered through the IMARK courseware such as exercises with feedback, pop-ups, animations etc.

We recommend that you take the lesson using the interactive courseware environment, and use the PDF version for printing the lesson and to use as a reference after you have completed the course.

Objectives

At the end of this lesson, you will be able to:

• understand the principles on which relational databases and SQL are based.

• apply the Extended Entity Relationship (EER) model to a simple set of data.

• understand the function of the main SQL statements.

Documents which allow you to create and modify relational databases using SQL, are available for download and print at the end of the lesson.

Principles

Relations can be viewed as two-dimensional tables where all the data is stored.

Let's consider for example this **Person table**.

	Table: PERSO	N	Attribute		
	ID	FirstName	Lastname	Work Phone	Home Phone
Tuple	1001	Laura	Williams	44.34.34.44	45.34.34.45
	10 <mark>02</mark>	Paul	Smith	63.56.55.64	63.35.13.44
	1003	David	Fisher	21.86.77.24	21.79.33.99
	Primary Key			-	

A row (or tuple) in a table is identified by a primary key. The other information in the row is referred to as attributes.

Specifically, the ID column in this table is the primary key.

EER modelling				
he design phase must identify the relationships between entities that properly describe the ollection. The Extended Entity Relationship (EER) model is one of the most widely used frameworks for lata modelling. It is based on three main categories:				
EER Notation	Name	Description	It may be	
	ENTITY	A class of real-world objects. It is normally a noun. An Entity would have one or many attributes.	physical object (e.g. person) event (e.g. appointment) concept (e.g. order).	
\ 			descriptor (describe properties of the entity, e.g. lastname of the person)	
•	ATTRIBUTE	A property of an entity	identifier (uniquely distinguish entit instances - primary key in relational context)	
			composite (a group of attributes used as a single attribute)	
\rightarrow	RELATIONSHIP	Describes the relationship between entities. Typically expressed in verbs (e.g. has).	There are no well defined standards the EER notation.	

ERn	nodelling			
able: N	NOVIE			
Code	Title	Director	Year	Latio consider this exemple
100	Sophie's choice	Pakula	1982	Let's consider this example.
101	The great dictator	Chaplin	1940	You have created a database for your video-rental store.
102	Dracula	Coppola	1992	Can you identify the following parts of the table?
102 Movie Chaplin				
				Choose your answers

Normalization	
redundancy. It is a bottom-up de For this reason it ha be used as another	alternative formal technique for defining relations that contain minimum esign technique, which makes it difficult to use in large designs. as been largely superseded by the top-down approaches (e.g. EER), but it can method of checking the properties of a design arrived at through EER be done as follows:
	1. Identify the key (simple or composite) of each relation.
	2. Identify any foreign keys in a relation.
	3. Check that the other attributes in the relation are determined by the relation's key.
	 Create a new relation comprising any attributes not determined by the relation's key.
	5. Repeat steps 1-4 for every relation.
	More information about normalization

From relations to tables

SQL is the language used to interact with a relational database.

SQL is more than simply a query language; it is a database sub-language and is becoming the **standard interface** to relational and non-relational database management systems (DBMS). The DBMS stores the data and retrieves or updates it **in response to SQL statements**. SQL was originally designed as a query language based on the relational algebra. It started as a language called **Sequel** (Structured English QUEry Language) which was developed by IBM in the mid-1970s as the data manipulation language (DML) of one of their early attempts at a relational database.

This language allowed users to access and manipulate data stored in the database. During the early 1980s, IBM renamed the language SQL and based two of their relational database packages, SQL/DS and DB2, on this language.

SQL was adopted as an industry standard in 1986 (SQL-86). Since then there has been three more standards, SQL-89, SQL2 (or SQL-92) and SQL3 (or SQL-99).

All commercial relational database vendors now support some **variant of the SQL standard**. It is also the basis of most database interoperability products and proposals (e.g. ODBC). You can find information about SQL validators at: http://developer.mimer.com/validator

Parts of SQL

Now let's consider the Patient relation.

Note that the PatientID attribute acts both as primary key and as foreign key in relation with the Person entity.

The "references" clause is used to specify referential integrity constraints and, optionally, the actions to be taken if the related row is deleted (ON DELETE) or the value of its primary key is updated (ON UPDATE).

CASCADE means that:

 on update, a change to the primary key value in the related row is reflected in the foreign key;

• on delete, if the related row is deleted then so is the row containing the foreign key.

PATIENT(PatientID, DateRegistered)

CREATE TABLE patient (patientid INTEGER NOT NULL, regdate DATE NOT NULL, PRIMARY KEY (patientid), FOREIGN KEY (patientid) REFERENCES person (personid)

ON DELETE CASCADE ON UPDATE CASCADE);

Parts of SQL

Finally, let's have a look at the **appointment relation**. Note that appointment has three primary keys: PatientId, Date and Time.

PatientId/PersonId

If the related Person row is deleted then so is the row containing PatientId, therefore the appointment is deleted.

If the PersonId value is updated nothing happens to the PatientId in this table (this means that the foreign key is here just a reference).

DoctorId/PersonId

If the related Person row is deleted then the DoctorId value is set to null, but the appointment is not deleted. If the PersonId value is updated then the change is reflected in the DoctorId. APPOINTMENT (PatientID, DoctorID, Date, Time, Duration) CREATE TABLE appointment (patientid INTEGER NOT NULL, doctorid INTEGER, appdate DATE NOT NULL, duration INTEGER NOT NULL, duration INTEGER DEFAULT 15, PRIMARY KEY (patientid, appdate, apptime), FOREIGN KEY (doctorid) REFERENCES person (personid) ON DELETE CASCADE ON UPDATE CASCADE);

Parts of SQL]	
		s in your database, you may want to add, delete, retrieve one by using the SQL data manipulation statements.
This part of SQL is	s named the Data Mar	nipulation Language (DML).
Following are the	DML essential stateme	nts:
	SELECT	Used to retrieve information from tables.
	INSERT	Used to add a new row or a set of rows.
	UPDATE	Used to modify an existing row.
	DELETE	Used to remove rows.

sing S	SQL- tools	
	Ilowing document describes the procedures to c and data using SQL:	create a database, and how to manipulate
Υοι	u can also view only the sections you are intere	sted in:
	Creating a database	Note: unless otherwise
1	Creating a new database	stated, all examples are in
	Creating and Listing Tables and Fields	compliance with the SQL2
- 	Data types on various database platforms	standard.
1	Creating SQL tables	
	Table Manipulations	These documents
	Inserting data	describe procedures using MySQL Windows
1	Adding new rows	version 3.23. Click on
1	Modifying existing rows	the link to learn more about MySQL.
1	Removing rows	about MySQL.
	Selecting data	
100 A	The SELECT statement	
1000 C	Joining tables	🖤 MySQL:
100 A	UNION, EXCEPT and INTERSECT operators	

Using SQL- tools	
MySQL Database Server	
The MySQL database server is the world's most popular open source da obtained from the MySQL download portal at: http://www.mysql.com/c	
MySQL is available at zero price under the GNU General Public License license to those who do not wish to be bound by the terms of the GPL. server and other MySQL products visit: http://www.mysql.com/products/li MySQL Licensing Policy please visit: http://www.mysql.com/products/li	To learn more about the MySQL(TM) database ts/mysql/index.html. To learn more about the
An HTML version of the MySQL Reference Manual can be found and sea http://www.mysql.com/doc/en/index.html. It is also available many oth versions at: http://www.mysql.com/documentation.	
Because all MySQL products are open source, free support provided by MySQL public mailing lists. You can subscribe to the MySQL mailinglist (Tool available at: http://www.mysql.com/documentation/lists.php	
MySQL AB also publishes a monthly email newsletter with articles abou issues, known bugs, and events of interest to the MySQL community. Y online subscription form or by sending email to newsletter@mysql.com	ou can subscribe to the newsletter by using the

Exercises
The following five exercises will allow you to apply the principles of data modelling for a relational database.
Good luck!

xercise 5	
o create and manipulate your database it is	important to know the main SQL statements.
ould you group them into the SQL categorie	es?
a Data Definition Language (DDL)	1 SELECT, INSERT, UPDATE, DELETE
Data Manipulation Language (DML)	GRANT, REVOKE
Data Control Language (DCL)	CREATE, DROP, ALTER
	age (drag and drop)

	If you want to know more
	J. Date. An Introduction to Database Systems Addison Wesley; ISBN: 201787229. The definitive book on database systems.
	J. Date, Hugh Darwen. Foundation for Future Database Systems: The Third anifesto Addison Wesley; ISBN: 0201709287.
	m Melton, Alan Simon. SQL 1999: Understanding Relational Language Components. organ Kaufmann; ISBN: 1558604561
Ν	be Celko (Foreword), Michael J. Hernandez, John L. Viescas. SQL Queries for Mere ortals: A Hands-on Guide to Data Manipulation in SQL. Addison Wesley; ISBN: 201433362
Ś	QL.ORG. Guide to online SQL resources. www.sql.org/online_resources.html
	ntelligent Enterprise: A magazine dedicated to strategic business applications that irn information into intelligence. (www.intelligententerprise.com)
	QL Validation and resources from Mimer SQL. ttp://developer.mimer.com/validator/
	he MySQL Database Server and MySQL Reference Manual can be obtained from the ySQL download portal at: http://www.mysql.com along with other MySQL products.